硼氮稠杂的多重共振型热活化延迟荧光分子(MR-TADF),其具有窄的半峰宽(FWHM)和较大的辐射跃迁速率(kR),因此基于该类发光分子的OLED能够实现较好的色纯度和较高的外量子效率(EQE),有望成为下一代OLED发光材料的突破点。然而,目前该类材料分子通常存在反系间窜越速率(kRISC)较低以及分子较为平面所导致的聚集诱导淬灭(ACQ)的问题,从而造成器件效率滚降比较严重。因此,如何提高kRISC和抑制ACQ效应,对改善OLED效率滚降具有重要的研究和产业化意义。
近日,新葡的京集团3512vip游劲松教授和宾正杨教授团队发展了一种“中环”策略以抑制MR-TADF分子堆积,并进一步提高MR-TADF分子的kRISC。在保持窄发光半峰宽的前提下,该团队成功发展了一种兼具高kRISC(>106 s-1)和高kR(>108 s-1)的蓝光MR-TADF分子DTBA-B2N3,有效抑制分子聚集产生的光谱展宽和发光淬灭,从而获得高效率和低效率滚降的蓝光窄光谱OLED。
在MR-TADF材料BCz-BN的基础上,基于“中环”策略发展了新型MR-TADF分子DTBA-BN2和DTBA-B2N3。理论计算研究表明,通过引入七元环受体基团,DTBA-BN2的S1态跃迁特征与其T2态的跃迁特征有较大的差异,因此具有更高的自旋轨道耦合系数(SOCS1-T2 = 0.87 cm-1),有利于其反系间窜越过程。随后,进一步拓展共振骨架,双硼类MR-TADF分子DTBA-B2N3的自旋轨道耦合系数得到进一步提高(SOCS1-T2 = 1.22 cm-1,SOCS1-T3 = 0.82 cm-1),使得激子从T2或T3态的反系间窜越过程更加高效,最终将kRISC从BCz-BN的104 s-1提升到DTBA-B2N3的106 s-1数量级。此外,BCz-BN的核心发光骨架较为平面,具有强烈的分子间π-π相互作用,ACQ效应十分严重。通过引入七元环受体,MR-TADF分子DTBA-BN2和DTBA-B2N3具有高度扭曲的分子构型,其核心骨架不存在明显的π-π相互作用,极大程度上抑制了ACQ效应,有利于改善器件效率滚降。
OLED测试结果表明,相比于基于BCz-BN的OLED,基于DTBA-BN2的OLED展现出了明显更加优异的器件性能以及更好的ACQ抑制作用,实现了31.2%的最大外量子效率、更小的效率滚降(EQE1000 = 25.6%)。此外,中环结构的引入可以有效保护发光中心,抑制分子聚集产生的光谱展宽和发光淬灭,使得在1~20%的浓度窗口下保持高效率和窄光谱。相比于基于对比分子B2的OLED,基于DTBA-B2N3的OLED展现出了明显更加优异的器件性能以及更窄的半峰宽,实现了30.9%的最大外量子效率、更小的效率滚降(EQE1000 = 20.5%)。这项工作为开发可产业化的高性能MR-TADF分子提供了一个新的分子设计思路。
该研究以“ Medium-Ring Strategy Enables Multiple Resonance Emitters with Twisted Geometry and Fast Spin-Flip to Suppress Efficiency Roll-Off”为题目发表在Angewandte Chemie International Edition上,新葡的京集团3512vip为第一单位,新葡的京集团3512vip宾正杨教授和游劲松教授为该论文通讯作者,雷搏文博士研究生为论文的第一作者。特别感谢国家自然科学基金委、四川省科技厅、新葡的京集团3512vip的经费支持。同时感谢新葡的京集团3512vip测试平台李静老师对于化合物表征等提供的帮助和支持。
文章链接: https://doi.org/10.1002/anie.202218405